Synthesis of polyfluoroalkylated bicyclic and tricyclic heterocyclic compounds

Yan-Song Liu and W ei-Y uan H uang*
Shanghai Institute of Organic C hemistry, C hinese A cademy of Science, 354 Fenglin Lu, Shanghai 200032, China

Abstract

In the presence of base, ethyl 2-hydropolyfluoroalk-2-enoates 1 are converted into polyfluoroalkylated pyrido[1,2-a]pyrimidines 3, 4 by reactions with 2-aminopyridine derivatives 2 and into polyfluoroalkylated pyrimido [2,1-b]benzothiazole 8 or thiazolo [3,2-a]pyrimidine 10, 11 derivatives using 2 -aminobenzothiazole 7 or 2-amino-1,3-thiazole 9 derivatives in moderate to good yields. U nder different basic conditions, polyfluoroalkenylimidazo[1,2-a]pyridine derivatives 5 or polyfluoroalkylated 1,3-thiazino-[3,2-a]benzimidazol-4-one 14 are formed, respectively, from the reaction of 2-aminopyridine derivatives 2 or 2-mercaptobenzimidazole 12 with ethyl polyfluoroalk-2-enoates 1 in moderate yields.

Introduction

Recently, much attention has been focused on the synthesis of fluorine-containing organic compounds particularly in thefields of medicinal and agricultural chemistry and of material science The replacement of hydrogen by a polyfluoroalkyl group in organic compounds may profoundly influence their physical and biological properties. ${ }^{1}$ Consequently, considerable efforts have been devoted to the development of new methodologies for the synthesis of fluorine-containing compounds. Various 2 H -pyrido[1,2-a]pyrimidin-2-ones, 4H-pyrido[1,2-a]pyrimidin-4-ones and imidizo[1,2-a]pyrimidines have been reported to possess significant biological activity, such as hypotensive, analgesic, CNS stimulant and bactericidal, amongst others; ${ }^{2,3,4}$ thiazolo[3,2-a]pyrimidine and pyrimido[2,1-b]benzothiazole derivatives have also shown remarkable fungicidal, analgesic, anti inflammatory, anticonvulsant and pesticidal activity etc. ${ }^{5-8}$ However, to the best of our knowledge, there has been little work on the synthesis of fluoroalkylated derivatives of these heterocycles except for the reported preparation of trifluoromethyl substituted imidazo[1,2-a]pyridines. ${ }^{9}$ In an earlier study, wedeveloped a new efficient method for the preparation of ethyl 2,2-dihydropolyfluoroalkanoates from readily available polyfluoroalkyl iodides. ${ }^{10} \mathrm{We}$ found that in the presence of base, the former eliminated HF readily to give the corresponding 2-hydropolyfluoroalk-2-enoates, which are versatile intermediates for the synthesis of fluoroalkylated heterocycles. U pon treatment with 2 -aminopyridine, 2 -amino-1,3-thiazole or 2 -amino-1,3-benzothiazole derivatives, which are known to possess nucleophilic centres on both nitrogen atoms of the molecule, or 2-mercaptobenzimidazole, with the nucleophilic centre on the mercapto or nitrogen atom of the molecule, the corresponding heterocycles were formed in moderate to good yields. In the case of the 2 -aminopyridine derivatives, the reaction products depend on the base used. The detailed results are reported herein.

Results and discussion

In the presence of triethylamine, ethyl 2-hydropolyfluoroalk2 -enoates 1 were allowed to react with >2 equiv. of 2 aminopyridine in acetonitrile at $90^{\circ} \mathrm{C}$ for ca. 50 h . Spectral examination of the reaction products revealed that two isomeric heterocyclic compounds $\mathbf{3}$ and $\mathbf{4}$, separable by column chromatography, were formed with the latter as the major product. Taking compounds 3ae and 4ae as examples: the ${ }^{19} \mathrm{~F}$ NMR spectrum of compound 3ae revealed the presence of

three CF_{2} resonances at $\delta 66.2,113.9$ and 118.9 while that of compound 4ae showed resonances at $\delta 66.8,106.2$ and 116.9, suggesting a 3 -chlorohexafluoropropyl chain in both cases. The ${ }^{1} H N M R$ spectrum showed only the presence of five aromatic or ethylenic protons and the absence of an ethoxy group, which indicated that both compounds were intramolecular cyclization products. The ${ }^{1} \mathrm{H}$ NM R of compound 3ae showed resonances at $\delta 6.81(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 7.30(\mathrm{~m}, 1 \mathrm{H}), 7.87(\mathrm{~m}, 2 \mathrm{H})$ and $9.12(\mathrm{~d}$, $J_{\text {HH }} 7.2,6-\mathrm{H}$). The downfield chemical shift of $6-\mathrm{H}$ is the characteristic proton signal for these 4-0xo compounds, attributable to the anisotropic effect of the carbonyl group. ${ }^{11}$ The other product 4ae showed resonances at $\delta 7.05(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H})$ and $6.92-$ 8.06 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{ArH}$). The mass spectrum of both compounds 3ae and 4ae showed $\mathrm{m} / \mathrm{z} 330\left(\mathrm{M}^{+}\right)$, $302\left(\mathrm{M}^{+}-\mathrm{CO}\right)$ and 167 $\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{C}_{4} \mathrm{~F}_{4} \mathrm{Cl}\right)$. Furthermore, by comparison with the IR carbonyl absorption of a nonfluoro analogue, ${ }^{3,4,11}$ we assigned compound 3 ae ($v_{\text {max }} 1710 \mathrm{~cm}^{-1}$) as 4 -oxo and compound 4ae ($v_{\text {max }} 1640 \mathrm{~cm}^{-1}$) as 2-oxo isomers (see Scheme 1 and Experimental section).

Formation of the isomeric 2 - and 4-oxo compounds was the result of M ichael addition of the ring nitrogen atom or the amino nitrogen atom on the fluorinated ester, followed by intramolecular cyclization, respectively (see Scheme 2),
2-A mino-4-methylpyridine reacted similarly whereas 2 -amino-6-methylpyridine $\mathbf{2 g}$ yielded only the 4 -oxo product in

Scheme 2 Substituent R_{F} as given in Scheme 1
moderate yield apparently due to the steric effect of the 6 -methyl group which hindered the M ichael addition of the ring nitrogen to the unsaturated esters 1.

Scheme 3 Substituent R_{F} as given in Scheme 1
In the case of 2-amino-5-bromopyridine, because of its low solubility in acetonitrile, the reaction was carried out in N, N,dimethylformamide at $90^{\circ} \mathrm{C}$ for 60 h ; 4 H -pyrido[1,2-a]pyridin4 -one was formed as expected in moderate yield, accompanied by a small amount of a by-product 5 . The structure of $\mathbf{5}$ was established through comparison of its ${ }^{13} \mathrm{C}$ N M R spectrum with that of a known analogous compound reported in the literature ${ }^{4 \mathrm{~b}, 4 \mathrm{~d}}$ and the examination of its spectra. Taking compound $5 a^{\prime} h$ as an example, its ${ }^{19} \mathrm{~F}$ NM R spectrum revealed resonances at $\delta 55.5\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{CF}_{2} \mathrm{Cl}\right), 135.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{FF}} 141,1 \mathrm{~F}\right)$ and 148.9 (d $J_{\text {fF }}$ 141, 1 F) which suggested a 3-chlorotetrafluoropropenyl chain. The ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of an ethoxy group with resonances at $\delta 1.36\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}_{\mathrm{HH}} 7.1, \mathrm{CH}_{3}\right)$ and $4.42\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}_{\mathrm{HH}} 7.1, \mathrm{CH}_{2}\right)$ and three aromatic protons at $\delta 7.55\left(2 \mathrm{H}, \mathrm{AB}, \mathrm{J}_{\mathrm{AB}} 8.6,7,8-\mathrm{H}\right)$ and $8.13(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$. The mass spectrum showed $\mathrm{m} / \mathrm{z} 416\left(\mathrm{M}^{+}+2\right), 414\left(\mathrm{M}^{+}\right)$and 385 $\left(\mathrm{M}^{+}-\mathrm{OEt}\right)$. The IR spectrum showed a carbonyl absorption at $1730 \mathrm{~cm}^{-1}$ (see Experimental section), so we assigned it to be an imidazo[1,2-a]pyridine derivative

The formation of the imidazo[1,2-a]pyridine derivative may be depicted as shown in Scheme 5.
N o cyclic nitrogen addition product $\mathbf{4}$ or $\mathbf{6}$ was obtained during the reaction, possibly because of the electronic effect of the bromo substituent. Further study showed that by employing $\mathrm{K}_{2} \mathrm{CO}_{3}$ in place of $\mathrm{Et}_{3} \mathrm{~N}$ as the base, the reaction of 2-aminopyridine and ethyl 2-hydropolyfluoroalk-2-enoate took place smoothly and gave imidazo[1,2-a]pyridine derivative 5 as the sole product in moderate yields. The detailed results are shown in Table 1

chem Scheme 6

Scheme 5 Substituent R ${ }_{F}$ as given in Scheme 6

For the synthesis of polyfluoroalkenylimidazo[1,2-a]pyridine, the reaction could be greatly accelerated by ultrasonic irradiation. In the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$, a mixture of 1 equiv. of 2 -hydropolyfluoroalk-2-enoates and 3 equiv. of 2-aminopyridine in acetonitrile was subjected to ultrasonic irradiation (125 W) for 2 h , after which in all cases the reaction was complete and gave a similar product to that in the thermal reactions. The detailed results are shown in Table 2.
A cetonitrile and N, N-dimethylformamide (DMF) are the solvents of choice. Furthermore, a substituent on the pyridine ring seems to have no effect.
It is noteworthy that the concentration of nucleophiles plays an important role in these reactions. Only when more than 2 equiv. of nucleophiles were used could the reaction proceed smoothly with later recovery of the excess reagents.
This reaction was also applied to a series of 2 -aminobenzothiazole derivatives. Generally, in the presence of a base (e.g. $\mathrm{K}_{2} \mathrm{CO}_{3}$ or triethylamine), a mixture of 2-hydropolyfluoro-alk-2-enoates (1 mmol) and a 2-aminobenzothiazole derivative (1.5 mmol) was heated in acetonitrile or D M F for 12 h and the

Scheme 6

Table 1 Synthesis of 4-polyfluoroalkylated 2H-pyrido[1,2-a]-pyrimidin-2-ones, 2-polyfluoroalkylated 4H-pyrido[1,2-a]pyrimidin-4ones and polyfluoroalkenylimidazo[1,2-a]pyridine

R_{F}	R^{1}	R^{2}	R^{3}	Base	Isolated yields of the products (\%) ${ }^{\text {a }}$		
					3	4	5
1a	H	H	H	$\mathrm{Et}_{3} \mathrm{~N}$	3ae, 18	4ae, 50	
1b	H	H	H	$\mathrm{Et}_{3} \mathrm{~N}$	3be, 16	4be, 54	
1c	H	H	H	$\mathrm{Et}_{3} \mathrm{~N}$	3ce, 23	4ce, 42	
1d	H	H	H	$\mathrm{Et}_{3} \mathrm{~N}$	3de, 16	4de, 43	
1a	CH_{3}	H	H	$\mathrm{Et}_{3} \mathrm{~N}$	3af, 18	4af, 53	
1c	CH_{3}	H	H	$\mathrm{Et}_{3} \mathrm{~N}$	3cf, 25	4cf, 39	
1a	H	H	CH_{3}	$\mathrm{Et}_{3} \mathrm{~N}$	3ag, 42		
1c	H	H	CH_{3}	$\mathrm{Et}_{3} \mathrm{~N}$	$3 \mathrm{cg}, 47$		
1 a	H	Br	H	$\mathrm{Et}_{3} \mathrm{~N}$	3ah, 44		5a'h, 8
1a	H	H	H	$\mathrm{K}_{2} \mathrm{CO}_{3}$			5a'e, 63
1b	H	H	H	$\mathrm{K}_{2} \mathrm{CO}_{3}$			5b'e, 57
1c	H	H	H	$\mathrm{K}_{2} \mathrm{CO}_{3}$			5c'e, 55
1a	Me	H	H	$\mathrm{K}_{2} \mathrm{CO}_{3}$			5a'f, 57
1b	Me	H	H	$\mathrm{K}_{2} \mathrm{CO}_{3}$			5b'f, 58
1c	Me	H	H	$\mathrm{K}_{2} \mathrm{CO}_{3}$			5c'f, 51
1a	H	H	CH_{3}	$\mathrm{K}_{2} \mathrm{CO}_{3}$			5a'g, 40
1a	H	Br	H	$\mathrm{K}_{2} \mathrm{CO}_{3}$			5a'h, 32
1c	H	Br	H	$\mathrm{K}_{2} \mathrm{CO}_{3}$			5c'h, 30

${ }^{\text {a }}$ I solated yields after chromatography based on $\mathbf{1 .}$
mixture was then worked up to give exclusively products 8 in good yield.

U nder similar conditions, the reaction of 2-amino-1,3thiazole with 2-hydropolyfluoroalk-2-enoate gave two isomers 10 and 11 separable by column chromatography. Their structure was established through ${ }^{1} \mathrm{H}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and mass spectra and elemental analyses. The detailed results are shown in Table 3.

Since 2-mercaptobenzimidazole possesses a similar structure to 2-aminothiazole, the possibility of the synthesis of poly-fluoroalkylated[1,3]thiazino[3,2-a]benzimidazol-4-one by this reaction sparked our interest. In the presence of triethylamine, the reaction of 1.5 equiv. of 2 -mercaptobenzimidizole with 1 equiv. of 2-hydropolyfluoroalk-2-enoates resulted in a complex mixture, presumably as a result of the enhanced nucleophilicity of the mercapto group in the presence of triethylamine. When NaHCO_{3} was used as the base in place of triethylamine, the reaction mixture was first heated at $50^{\circ} \mathrm{C}$ for 6 h and then at $90^{\circ} \mathrm{C}$ for 10 h . U pon monitoring the reaction by ${ }^{19} \mathrm{~F} \mathrm{NMR}$ spectroscopy, we found that only one product was formed, the

Scheme $7 \quad R_{F}$ as given in Scheme 1 and $R^{\prime}{ }_{F}$ as given in Scheme 6; R^{1}, R^{2} and R^{3} are given in Table 1 together with $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$

Table 2 Synthesis of polyfluoroalkenylimidazo[1,2-a]pyridine by ultrasonic irradiation

R_{F}	N ucleophile	R eaction time (t/min)	I solat produ	
1a	2e	40	$5 a^{\prime} \mathrm{e}$	53
1 b	2e	60	$5 b^{\prime}$ e	59
1b	$2 f$	60	5b'f	48
1a	2g	70	$5 a^{\prime} \mathrm{g}$	46
1c	2h	120	5c'h	33
a I solated yield based on 1 after chromatography.				
1a-d,m 7i-k				
a $\mathrm{R}_{\mathrm{F}}=\mathrm{Cl}\left(\mathrm{CF}_{2}\right)_{3}$ i $\mathrm{R}=\mathrm{H}$ b $\mathrm{R}_{\mathrm{F}}=\mathrm{F}\left(\mathrm{CF}_{2}\right)_{3}$ j $\mathrm{R}=\mathrm{Me}$ c $\mathrm{R}_{\mathrm{F}}=\mathrm{Cl}\left(\mathrm{CF}_{2}\right)_{5}$ k $\mathrm{R}=\mathrm{NO}$ d $\mathrm{R}_{\mathrm{F}}=\mathrm{F}\left(\mathrm{CF}_{2}\right)_{5}$ m $\mathrm{R}_{\mathrm{F}}=\mathrm{ClCF}$				
$\mathrm{Et}_{3} \mathrm{~N}$ or $\mathrm{K}_{2} \mathrm{CO}_{3} \mathrm{MeCN}$ or DMF				

Scheme 8

structure of which was established as 2-polyfluoroalky|[1,3]-thiazino[3,2-a]benzimidazol-4-one 14c upon the basis of its ${ }^{1} H N M R,{ }^{19} F N M R, I R$ and mass spectra together with its elemental analysis.
In summary, a convenient new one-step method for the selective synthesis of new 2-polyfluoroalkyl-4H-pyrido[1,2-a]-pyrimidin-4-ones 3, 4-polyfluoroalkyl-2H-pyrido[1,2-a]pyri-midin-2-ones 4, 2 -fluoroalkenylimidazo[1,2-a]pyrimidines 5 , 2-fluoroalkyl-4H -pyrimido[2,1-b]benzothiazol-4-ones 8, 7-fluoro-alkyl-5H-1,4-thiazolo[3,2-a]pyrimidin-5-ones 10, 5-fluoroalkyl7H -thiazolo[3,2-a]pyrimidin-7-ones 11 and 2-polyfluoroalkyl-[1,3]thiazino[3,2-a]benzimidazol-4-one 14 derivatives directly from ethyl 2 -hydropolyfluoroalk-2-enoates is described. The simplicity of the experimental procedure and the readily availability of the starting materials make this synthetic method a practical one.

Experimental

All mps are uncorrected. IR Spectra were recorded on an

Scheme 9

Table 3 Synthesis of 7-fluoroalkyl-5H -1,4-thiazolo[3,2-a]pyrimidin-5ones, 5-fluoroalkyl-7H -thiazolo[3,2-a]pyrimidin-7-ones and 2-fluoro-alkyl-4H -pyrimido[2,1-b]benzothiazol-4-ones

R_{f}	Substrate*	I solated yield (\%) \dagger		
		8	10	11
1 a	7i	8ai, 67		
1 b	7i	8bi, 70		
1d	7i	8di, 70		
1m	7 i	$8 \mathrm{mi}, 74$		
1a	7i	8aj, 83		
1c	7j	8cj, 82		
1 m	7j	8mj, 73		
1a	7k	8ak, 71		
1 d	7k	8dk, 73		
1 a	9		10a, 22	11a, 49
1b	9		10b, 13	11b, 64
1m	9		10m, 15	11m, 39

* Compounds 7i,j,k are given in Scheme 8. \dagger Isolated yields based on $\mathbf{1}$ after chromatography.

14c yield: 78\%

Scheme 10

IR - 440 spectrometer, using K Br pellets or CCl_{4} liquid films. ${ }^{1} \mathrm{H}$ N M R Spectra were measured on F X -90Q (90 M Hz), Bruker A M $300(300 \mathrm{M} \mathrm{Hz})$ or A M X - $600(600 \mathrm{M} \mathrm{Hz})$ machines and ${ }^{13} \mathrm{C}$ NMR spectra were measured on an AMX-600 (600 M Hz) spectrometer, using SiM_{4} as internal standard. ${ }^{19} \mathrm{~F}$ NMR Spectra were recorded on a Varian EM -360L spectrometer (56.4 M Hz) using $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (TFA) as external standard. In ${ }^{19} \mathrm{~F}$ N M R spectra, chemical shifts (in ppm) were positive for upfield shifts and the values are reported as $\delta\left(\mathrm{CFCl}_{3}\right)\left[\delta\left(\mathrm{CFCl}_{3}\right)=\delta(\mathrm{TFA})+\right.$ 76.8]. J Values are recorded in $\mathrm{Hz} . \mathrm{M}$ ass spectra were taken on a Finnegan GC-M S 4021 spectrometer. Column chromatography was performed using silica gel H , particle size 10-40 $\mu \mathrm{m}$.

Preparation of 4-polyfluoroalkyl-2H -pyrido[1,2-a]pyrimidin-2ones and 2-polyfluoroalkyl-4H-pyridol[1,2-a]pyrimidin-4-ones

Typical procedure. A mixture of 2 -hydropolyfluoroalk-2-
enoate $\mathbf{1}$ (1 mmol), 2-aminopyridine derivative $\mathbf{2}$ (3 mmol), triethylamine (5 mmol) and acetonitrile (5 ml) was stirred at $90^{\circ} \mathrm{C}$ for 50 h to give a black reaction product, which was then adsorbed on silica (particle size 100-200 mesh; 5 g) and air dried at $50^{\circ} \mathrm{C}$. The whole mass was then purified by column chromatography using light petroleum-ethyl acetate ($8: 1, \mathrm{v} / \mathrm{v}$) as eluent to give 2-polyfluoroalkyl-4H -pyrido[1,2-a]pyrimidin-4-one. A fter that, elution with light petroleum ether-ethyl acetate ($2: 1, \mathrm{v} / \mathrm{v}$) gave first the excess of 2 -aminopyridine derivatives 2, followed by light petroleum-ethyl acetate ($1: 1$) as eluent to give 4-polyfluoroalkyl-2H -pyrido[1,2-a]pyrimidin-2-one as a solid.
C ompound 3ae. M p 134-136 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1710(\mathrm{C}=0)$ and 1100-1200 (CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.81(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 1 \mathrm{H}), 7.87$ $(\mathrm{m}, 2 \mathrm{H})$ and $9.12\left(\mathrm{~d},{ }^{3}{ }_{\mathrm{HH}} 7.2,1 \mathrm{H}\right) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 66.2(\mathrm{~s}, 2 \mathrm{~F})$, 113.9 (s, 2 F) and 118.9 (s, 2 F); m/z $330\left(\mathrm{M}^{+}, 43.5 \%\right), 302$ $(\mathrm{M}+-\mathrm{CO}, 20.2)$ and $167\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{Cl}, 100\right)$ (Found: C, 40.2; H, 1.3; $\mathrm{N}, 8.6 ; \mathrm{F}, 34.1 . \mathrm{C}_{11} \mathrm{H}_{5} \mathrm{CIF}_{6} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 40.0$; H, 1.5; N, 8.5; F, 34.5\%).
Compound 4ae. M p 115-117 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1640(\mathrm{C}=0)$ and 1110-1210 (CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.05(\mathrm{~s}, 1 \mathrm{H})$ and 6.92-8.06 (m, 4 H); $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 66.8$ (s, 2 F), $106.2(\mathrm{~s}, 2 \mathrm{~F}$) and 116.9 (s, 2 F); $\mathrm{m} / \mathrm{z} 330\left(\mathrm{M}^{+}, 28.3 \%\right), 302\left(\mathrm{M}^{+}-\mathrm{CO}, 13.1\right)$ and 167 $\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{Cl}, 100\right)$ (Found: C, 40.2; H, 1.5; N, 8.55; F, 34.8. $\mathrm{C}_{11} \mathrm{H}_{5} \mathrm{CIF}_{6} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 40.0 ; \mathrm{H}, 1.5 ; \mathrm{N}, 8.5 ; \mathrm{F}, 34.5 \%$).

Compound 3be. M p $117-119^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1720(\mathrm{C}=0)$ and 1120-1240(CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.81(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 1 \mathrm{H})$, $7.88(\mathrm{~m}, 2 \mathrm{H})$ and $9.12\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\text {нн }} 7.2,1 \mathrm{H}\right)$; $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 79.6(\mathrm{~s}, 3$ F), 116.4 (s, 2 F) and $125.4\left(\mathrm{~s}, 2 \mathrm{~F}\right.$); m/z 314 (M $\left.{ }^{+}, 74.0 \%\right), 286$ ($\mathrm{M}^{+}-\mathrm{CO}, 32.4$) and $167\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{C}_{2} \mathrm{~F}_{5}, 100\right)$ (Found: C, 41.95; $\mathrm{H}, 1.5$; $\mathrm{N}, 8.8 ; \mathrm{F}, 42.5 . \mathrm{C}_{11} \mathrm{H}_{5} \mathrm{~F}_{7} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 42.1 ; \mathrm{H}$, 1.6; N, 8.9; F, 42.3\%).

Compound 4be. M p 104-106 ${ }^{\circ}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1640(\mathrm{C}=0)$ and 1120-1240 (CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.82-7.97(\mathrm{~m}, 4 \mathrm{H})$ and 7.02 $(\mathrm{s}, 1 \mathrm{H}) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 79.2(\mathrm{~s}, 3 \mathrm{~F}), 107.7(\mathrm{~s}, 2 \mathrm{~F})$ and 122.8 (s, 2 F); m/z $314\left(\mathrm{M}^{+}, 63.0 \%\right), 286\left(\mathrm{M}^{+}-\mathrm{CO}, 28.0\right)$ and 167 ($\mathrm{M}^{+}-\mathrm{CO}-\mathrm{C}_{2} \mathrm{~F}_{5}, 100$) (Found: C, 42.25; H, 1.5; N, 8.8; F, 42.0. $\mathrm{C}_{11} \mathrm{H}_{5} \mathrm{~F}_{7} \mathrm{~N}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 42.1 ; \mathrm{H}, 1.6 ; \mathrm{N}, 8.9 ; \mathrm{F}, 42.3 \%\right)$.

Compound 3ce. M p 118-120 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1710(\mathrm{C}=0)$ and 1110-1220 (CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.82(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 1 \mathrm{H}), 7.87$ ($\mathrm{m}, 2 \mathrm{H}$) and $9.12\left(\mathrm{~d},{ }^{3}{ }_{\mathrm{HH}} 7.1,1 \mathrm{H}\right)$; $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right): 67.1(\mathrm{~s}, 2 \mathrm{~F})$, 115.0 (s, 2 F) and 119.9 (m, 6 F); m/z $430\left(\mathrm{M}^{+}, 28.3 \%\right), 402$ $\left(\mathrm{M}^{+}-\mathrm{CO}, 11.5\right)$ and $167\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{C}_{4} \mathrm{~F}_{8} \mathrm{Cl}, 100\right)$ (Found: C, 36.25; H, 1.2; N, 6.55; F, 43.8. $\mathrm{C}_{13} \mathrm{H}_{5} \mathrm{ClF}_{10} \mathrm{~N}_{2} \mathrm{O}$ requires C , 36.3; H, 1.2; N, 6.5; F, 44.1\%).

Compound 4ce. $107-109{ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1640(\mathrm{C}=0)$ and

 1 H) and $8.02\left(\mathrm{~d},{ }^{3} \mathrm{H}_{\text {нн }} 7.4,1 \mathrm{H}\right.$); $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 67.4$ (s, 2 F), 106.8 ($\mathrm{s}, 2 \mathrm{~F}$) and $118.9(\mathrm{~m}, 6 \mathrm{~F}) ; \mathrm{m} / \mathrm{z} 430\left(\mathrm{M}^{+}, 11.8 \%\right), 395\left(\mathrm{M}^{+}-\mathrm{Cl}\right.$, 10.1) and $167\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{C}_{4} \mathrm{~F}_{8} \mathrm{Cl}, 100\right)$ (Found: $\mathrm{C}, 36.15 ; \mathrm{H}$, 1.0; $\mathrm{N}, 6.4 ; \mathrm{F}, 43.7 . \mathrm{C}_{13} \mathrm{H}_{5} \mathrm{CIF}_{10} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 36.3 ; \mathrm{H}, 1.2 ; \mathrm{N}$, 6.5; F, 44.1\%).

Compound 3de. $\mathrm{Mp} 97-99^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1720(\mathrm{C}=0)$ and 1150-1240(CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.81(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 1 \mathrm{H})$, $7.83(\mathrm{~m}, 2 \mathrm{H})$ and $9.12\left(\mathrm{~d},{ }^{3} \mathrm{H}_{\text {нн }} 7.2,1 \mathrm{H}\right) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 80.2(\mathrm{~s}, 3$ F), $115.3(\mathrm{~s}, 2 \mathrm{~F}), 121.2(\mathrm{~m}, 4 \mathrm{~F})$ and $125.4(\mathrm{~s}, 2 \mathrm{~F}) ; \mathrm{m} / \mathrm{z} 414\left(\mathrm{M}^{+}\right.$, 41.5\%), $386\left(\mathrm{M}^{+}-\mathrm{CO}, 15.5\right)$ and $167\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{C}_{4} \mathrm{~F}_{9}, 100\right)$ (Found: $\mathrm{C}, 37.8 ; \mathrm{H}, 1.1 ; \mathrm{N}, 7.05 ; \mathrm{F}, 50.8 . \mathrm{C}_{13} \mathrm{H}_{5} \mathrm{~F}_{11} \mathrm{~N}_{2} \mathrm{O}$ requires C, 37.7; H , 1.2; N , 6.8; F, 50.5\%).
Compound 4de. M p 146-148 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1640(\mathrm{C}=0)$ and 1140-1240(CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.82(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H})$, $7.44(\mathrm{~m}, 2 \mathrm{H})$ and $8.01(\mathrm{~m}, 1 \mathrm{H}) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 80.1(\mathrm{~s}, 3 \mathrm{~F}), 106.0$ ($\mathrm{s}, 2 \mathrm{~F}$), 118.0 ($\mathrm{s}, 2 \mathrm{~F}$), 120.6 ($\mathrm{s}, 2 \mathrm{~F}$) and 124.3 ($\mathrm{s}, 2 \mathrm{~F}$); m/z 414 $\left(\mathrm{M}^{+}, 27.8 \%\right), 386\left(\mathrm{M}^{+}-\mathrm{CO}, 14.8\right)$ and $167\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{C}_{4} \mathrm{~F}_{9}\right.$, 100) (Found: C, 37.8; $\mathrm{H}, 1.2 ; \mathrm{N}, 6.9 . \mathrm{C}_{13} \mathrm{H}_{5} \mathrm{~F}_{11} \mathrm{~N}_{2} \mathrm{O}$ requires C , 37.7; H, 1.2; N, 6.8\%).

Compound 3af. Mp 87-89 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1710(\mathrm{C}=0)$ and 1130-1200(CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.54(\mathrm{~s}, 3 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 7.13$

$\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 66.5(\mathrm{~s}, 2 \mathrm{~F}), 114.7(\mathrm{~s}, 2 \mathrm{~F})$ and $119.6(\mathrm{~s}, 2 \mathrm{~F}) ; \mathrm{m} / \mathrm{z} 344$ $\left(\mathrm{M}^{+}, 45.3 \%\right), 316\left(\mathrm{M}^{+}-\mathrm{CO}, 23.3\right)$ and $181\left(\mathrm{M}^{+}-\mathrm{CO}-\right.$ $\mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{Cl}, 100$) (Found: C, 42.0; H, 1.9; N, 8.1; F, 32.2. $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{CIF}_{6} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 41.8 ; \mathrm{H}, 2.05 ; \mathrm{N}, 8.1 ; \mathrm{F}, 33.1 \%$).

Compound 4af. $\mathrm{Mp} 168-170^{\circ} \mathrm{C}$ (blackens); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ $1640\left(\mathrm{C}=0\right.$) and 1110-1200 (CF); $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right.\right.$]acetone) 2.44 ($\mathrm{s}, 3$ H), 6.86 (s, 1 H), 6.95 (d, ${ }^{3}{ }_{\mathrm{H}} \mathrm{7} 7.2,1 \mathrm{H}$), 7.09 ($\mathrm{s}, 1 \mathrm{H}$) and 8.09 (d, $\left.{ }^{3}\right]_{\mathrm{HH}} 7.2,1 \mathrm{H}$); $\delta_{\mathrm{F}}\left(\left[{ }^{2} \mathrm{H}\right.\right.$ 6]acetone) $68.4(\mathrm{~s}, 2 \mathrm{~F})$, 107.6 (s, 2 F) and 118.6 (s, 2 F); m/z $344\left(\mathrm{M}^{+}, 14.6 \%\right), 316\left(\mathrm{M}^{+}-\mathrm{CO}\right.$, 9.5) and $181\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{Cl}, 100\right)$ (Found: C, 41.6; H, 1.9; N, 8.2; F, 33.2. $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{ClF}_{6} \mathrm{~N}_{2} \mathrm{O}$ requires C, 41.8; $\mathrm{H}, 2.05$; N, 8.1; F, 33.1\%).

Compound 3cf. Mp 116-118 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1710(\mathrm{C}=0)$ and 1150-1210(CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.53(\mathrm{~s}, 3 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 7.09$ ($\mathrm{d},{ }^{3} \mathrm{H}_{\text {н }} 7.2,1 \mathrm{H}$), $7.59(\mathrm{~s}, 1 \mathrm{H})$ and 8.96 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\text {нн }} 7.2,1 \mathrm{H}$); $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 67.4(\mathrm{~s}, 2 \mathrm{~F}), 115.4(\mathrm{~s}, 2 \mathrm{~F})$ and $120.5(\mathrm{~m}, 6 \mathrm{~F}) ; \mathrm{m} / \mathrm{z}$ $444\left(\mathrm{M}^{+}, 25.4 \%\right), 416\left(\mathrm{M}^{+}-\mathrm{CO}, 11.2\right)$ and $181\left(\mathrm{M}^{+}-\mathrm{CO}-\right.$ $\mathrm{C}_{4} \mathrm{~F}_{8} \mathrm{Cl}, 100$) (Found: C, 38.1; H, 1.6; N, 6.3; F, 42.5. $\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{ClF}_{10} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 37.8 ; \mathrm{H}, 1.6 ; \mathrm{N}, 6.3 ; \mathrm{F}, 42.7 \%$).
Compound 4cf. Mp 149-151 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1650(\mathrm{C}=0)$ and 1140-1200 (CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.41(\mathrm{~s}, 3 \mathrm{H}), 6.73\left(\mathrm{~d},{ }^{3}{ }^{3}{ }_{\text {нн }}\right.$ $7.5,1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H})$ and $7.90\left(\mathrm{~d},{ }^{3} \mathrm{JHH}_{\mathrm{H}} 7.5,1 \mathrm{H}\right)$; $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 68.4(\mathrm{~s}, 2 \mathrm{~F}), 106.9$ (s, 2 F) and $119.1(\mathrm{~m}, 6 \mathrm{~F})$; $\mathrm{m} / \mathrm{z} 444\left(\mathrm{M}^{+}, 14.2 \%\right), 416\left(\mathrm{M}^{+}-\mathrm{CO}, 6.8\right)$ and $\left(\mathrm{M}^{+}-\mathrm{CO}-\right.$ $\mathrm{C}_{4} \mathrm{~F}_{\mathrm{B}} \mathrm{Cl}, 100$) (Found: C, 37.7; H, 1.4; N, 6.2; F, 43.1. $\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{ClF}_{10} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 37.8 ; \mathrm{H}, 1.6 ; \mathrm{N}, 6.3 ; \mathrm{F}$, 42.7\%).

Compound 3ag. Mp $66-68^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1710(\mathrm{C}=0)$ and 1110-1190 (CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.06(\mathrm{~s}, 3 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H})$, $6.75(\mathrm{~m}, 1 \mathrm{H})$ and $7.52(\mathrm{~m}, 2 \mathrm{H})$; $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 66.7(\mathrm{~s}, 2 \mathrm{~F}), 115.2$ ($\mathrm{s}, 2 \mathrm{~F}$) and $119.6(\mathrm{~s}, 2 \mathrm{~F}) ; \mathrm{m} / \mathrm{z} 344\left(\mathrm{M}^{+}, 32.0 \%\right), 316\left(\mathrm{M}^{+}-\mathrm{CO}\right.$, 30.4) and $181\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{Cl}, 100\right)$ (Found: $\mathrm{C}, 41.9 ; \mathrm{H}$, 1.9; N , 8.1; F, 33.0. $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{ClF}_{6} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 41.8 ; \mathrm{H}, 2.05 ; \mathrm{N}$, 8.1; F, 33.1\%).

Compound 3cg. $\mathrm{Mp} 51-53^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1720(\mathrm{C}=0)$ and 1110-1220 (CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.06(\mathrm{~s}, 3 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.79$ $(\mathrm{m}, 1 \mathrm{H})$ and $7.56(\mathrm{~m}, 2 \mathrm{H}) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 67.3(\mathrm{~s}, 2 \mathrm{~F}), 115.8(\mathrm{~s}, 2$ F) and $120.4(\mathrm{~m}, 6 \mathrm{~F}) ; \mathrm{m} / \mathrm{z} 444\left(\mathrm{M}^{+}, 27.5 \%\right), 416\left(\mathrm{M}^{+}-\mathrm{CO}\right.$, 28.8) and $181\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{C}_{4} \mathrm{~F}_{8} \mathrm{Cl}, 100\right)$ (Found: $\mathrm{C}, 38.3$; $\mathrm{H}, 1.6 ; \mathrm{N}, 6.4 ; \mathrm{F}, 42.0 . \mathrm{C}_{14} \mathrm{H}_{7} \mathrm{ClF}_{10} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 37.8 ; \mathrm{H}, 1.6$; N, 6.3; F, 42.7\%).

Reaction of 2-amino-5-bromopyridine with ethyl 2-hydropoly-fluoroalk-2-enoates

A mixture of ethyl 2 -hydropolyfluoroalk-2-enoate (1 mmol), 2 -amino-5-bromopyridine (3 mmol), triethylamine (5 mmol) and N, N-dimethylformamide (5 ml) was stirred at $100^{\circ} \mathrm{C}$ for 50 h after which the mixture was cooled and extracted with ethyl acetate The extract was washed with water and saturated brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was purified by column chromatography using light petroleumethyl acetate ($10: 1$) as eluent to give 7-bromo-2-fluoroalkyl4H -pyrido[1,2-a]pyrimidin-4-one and 6-bromo-2-fluoro-alkenyl-3-(ethoxycarbonyl)imidazo[1,2-a]pyridine, respectively.

C ompound 3ah. M p 145-147 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1710(\mathrm{C}=0)$ and 1100-1180 (CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.84(\mathrm{~s}, 1 \mathrm{H}), 7.70\left(\mathrm{~d},{ }^{3}{ }_{\text {нн }} 9.4\right.$, 1 H), $7.92\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\text {н }} 9.4,{ }^{3} \mathrm{~J}_{\text {нн }} 1.8,1 \mathrm{H}\right)$ and $9.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\text {нн }} 1.8,1\right.$ H); $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 66.5(\mathrm{~s}, 2 \mathrm{~F}), 114.6(\mathrm{~s}, 2 \mathrm{~F})$ and 119.3 (s, 2 F); m/z $410\left(\mathrm{M}^{+}+2,57.0 \%\right), 408\left(\mathrm{M}^{+}, 40.8\right), 380\left(\mathrm{M}^{+}-\mathrm{CO}, 25.6\right), 247$ $\left(\mathrm{M}^{+}+2-\mathrm{CO}-\mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{Cl}, 100\right)$ and $245\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{Cl}\right.$, 95.4) (Found: C, 32.3; $\mathrm{H}, 0.8 ; \mathrm{N}, 6.9 ; \mathrm{F}, 27.8 . \mathrm{C}_{11} \mathrm{H}_{4} \mathrm{BrClF}_{6} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 32.3 ; \mathrm{H}, 1.0 ; \mathrm{N}, 6.8 ; \mathrm{F}, 27.8 \%)$.

Compound 5a'h. M p $123-125^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1730(\mathrm{C}=0)$ and 1160-1240 (CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.36\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\text {нн }} 7.1,3 \mathrm{H}\right), 4.42(\mathrm{q}$, $\left.{ }^{3} \mathrm{~J}_{\text {нH }} 7.1,2 \mathrm{H}\right), 7.55\left(\mathrm{AB}, \mathrm{J}_{\mathrm{AB}} 8.6,2 \mathrm{H}\right)$ and $8.13(\mathrm{~s}, 1 \mathrm{H})$; $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 55.5(\mathrm{~m}, 2 \mathrm{~F}), 135.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{FF}} 141,1 \mathrm{~F}\right)$ and $148.9(\mathrm{~d}$, $\left.{ }^{3} \int_{\mathrm{FF}} 1,41,1 \mathrm{~F}\right) ; \mathrm{m} / \mathrm{z} 416\left(\mathrm{M}^{+}+2,40.0 \%\right), 414\left(\mathrm{M}^{+}, 30.6\right), 387$ $\left(\mathrm{M}^{+}+2\right.$ - OEt, 48.5), $385\left(\mathrm{M}^{+}-0 E t, 36.0\right), 353\left(\mathrm{M}^{+}+\right.$ $\left.2-\mathrm{CO}-\mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{Cl}, 35.7\right), 351(\mathrm{M}+-\mathrm{CO}-\mathrm{Cl}, 35.1), 303$ $\left(\mathrm{M}^{+}+2-\mathrm{CO}-\mathrm{CF}_{2} \mathrm{Cl}, 100\right)$ and $301\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{Cl}, 93.7\right)$
(Found: C, 37.5; H, 1.8; N, 6.8; F, 18.4. $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrClF}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, 37.6; H, 1.9; N, 6.7; F, 18.3\%).

Preparation of polyfluoroalkenylimidazo[1,2-a]pyridine derivatives 5

Typical procedure. A mixture of ethyl 2-hydropolyfluoroalk-2-enoate 1 (1 mmol), a 2 -aminopyridine derivative (3 mmol) and acetonitrile (5 ml) was heated at $90^{\circ} \mathrm{C}$ for 60 h . A fter cooling to room temperature, the reaction mixture was extracted with ethyl acetate. The extract was washed with saturated brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The resulting residue was purified by column chromatography using light petroleum-ethyl acetate ($10: 1$) as eluent to give the products.
Compound 5a'e. M p $123-125^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1730$ $(\mathrm{C}=0), 1640(\mathrm{C}=\mathrm{C})$ and 1170-1280(CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.45(\mathrm{t}$,
 7.47 ($\mathrm{t}, \mathrm{J}_{\text {нн }} 8.9,1 \mathrm{H}$), $7.83\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}} 8.9,1 \mathrm{H}\right.$) and $8.09\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\text {н }}\right.$ $6.8,1 \mathrm{H}$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right.$) 14.07 (s, 1 C), 61.77 (s, 1 C), 113.27 (d , ${ }^{1} \mathrm{~J}_{\text {cf }} 114,1 \mathrm{C}$), 115.53 ($\mathrm{s}, 1 \mathrm{C}$), 120.09 ($\mathrm{m}, 1 \mathrm{C}$), 119.52 ($\mathrm{s}, 1$ C), 125.03 ($\mathrm{s}, 1 \mathrm{C}$), 128.16 ($\mathrm{s}, 1 \mathrm{C}$), 138.35 ($\mathrm{s}, 1 \mathrm{C}$), 139.77 (m, 1 C), 143.29 ($\mathrm{m}, 1 \mathrm{C}$), 146.31 ($\mathrm{s}, 1 \mathrm{C}$) and 161.54 ($\mathrm{s}, 1 \mathrm{C}$); $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 55.3(\mathrm{~s}, 2 \mathrm{~F}), 134.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{FF}} 142,1 \mathrm{~F}\right.$) and 150.5 (d , $\left.3_{\mathrm{j}} \mathrm{FF} 142,1 \mathrm{~F}\right) ; \mathrm{m} / \mathrm{z} 336\left(\mathrm{M}^{+}, 37.0 \%\right), 307\left(\mathrm{M}^{+}-\mathrm{Et}, 48.7\right), 291$ $\left(\mathrm{M}^{+}-0 E t, 15.9\right)$ and $223\left(\mathrm{M}^{+}-113,100\right)$ (Found: $\mathrm{C}, 46.0$; $\mathrm{H}, 2.5 ; \mathrm{N}, 8.2 ; \mathrm{F}, 21.7 . \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{CIF}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 46.4 ; \mathrm{H}$, 2.7; N, 8.3; F, 22.6\%).

Compound 5b'e. M p 119-121 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1730(\mathrm{C}-\mathrm{O})$ and 1140-1220(C-F); $\delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 1.35\left(\mathrm{t},{ }^{3}{ }_{\mathrm{HH}} 7.2,3 \mathrm{H}\right), 4.40(\mathrm{q}$,
 ($\mathrm{d}, \sqrt{3}_{\mathrm{HH}} 8.0,1 \mathrm{H}$) and $8.01\left(\mathrm{~d}, 3_{\mathrm{JH}} 6.7,1 \mathrm{H}\right) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 67.5$ (s, $3 \mathrm{~F}), 136.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{FF}} 141,1 \mathrm{~F}\right)$ and $156.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{FF}} 141,1 \mathrm{~F}\right)$; m / z 320 ($\mathrm{M}^{+}, 31.2 \%$), 291 (M^{+}- Et, 65.6), 275 (M^{+}- OEt, 18.7) and $78\left(\mathrm{M}^{+}-242,100\right)$ (Found: C, 49.4; H, 3.0; N, 9.3; F, 29.1. $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, 48.8; H, 2.8; N , 8.75; F, 29.7\%).
Compound 5c'e. Mp $51-53^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1730(\mathrm{C}=0)$ and 1120-1240 (CF); $\delta_{\text {н }}\left(\mathrm{CDCl}_{3}\right) 1.44$ ($\mathrm{t},{ }^{3}$) нн $7.1,3 \mathrm{H}$), 4.50 (q , ${ }^{3}$ $\left._{\text {нн }} 7.1,2 \mathrm{H}\right), 7.11$ ($\mathrm{t},{ }^{3}{ }^{3}$ нн $\left.6.7,1 \mathrm{H}\right), 7.47\left(\mathrm{t},{ }^{3}{ }^{3}\right.$ нн $\left.8.5,1 \mathrm{H}\right), 7.84$ $\left(\mathrm{d},{ }^{3} \mathrm{HH}_{\mathrm{H}} 8.5,1 \mathrm{H}\right)$ and $8.04\left(\mathrm{~d}, 3_{\mathrm{HH}} 6.7,1 \mathrm{H}\right) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)$ $67.4(\mathrm{~s}, 2 \mathrm{~F}), 115.9(\mathrm{~s}, 2 \mathrm{~F}), 121.3(\mathrm{~s}, 2 \mathrm{~F}), 133.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{fF}} 141,1 \mathrm{~F}\right.$) and 153.2 ($\mathrm{d}, \mathrm{J}_{\mathrm{ff}} 141,1 \mathrm{~F}$); m/z $436(\mathrm{M}+, 31.8 \%), 407$ ($M^{+}-E t, 29.3$), $39.1\left(M^{+}-O E t, 14.8\right), 251\left(M^{+}-\mathrm{C}_{3} \mathrm{~F}_{6} \mathrm{Cl}\right.$, 15.1) and $223\left(\mathrm{M}^{+}-213,100\right)$ (Found: C, 41.0; H, 1.9; N, 6.4; $\mathrm{F}, 34.6 . \mathrm{C}_{15} \mathrm{H}_{9} \mathrm{ClF}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, 41.3; H, 2.1; N, 6.4; F, 34.8%).
Compound 5a'f. $94-96^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1730(\mathrm{C}=0)$ and 1170-1240 (CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$) $1.43\left(\mathrm{t},{ }^{3}\right)_{\text {нн }} 7.2,3 \mathrm{H}$), 2.47 (s ,
 and 7.96 (d, $\left.{ }^{3}\right)_{\text {нн }} 7.0,1 \mathrm{H}$); $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 56.1\left(\mathrm{dd}, \mathrm{J}_{\mathrm{FF}} 28,{ }^{4} \mathrm{~J}_{\mathrm{FF}} 15\right.$, 2 F), $134.8\left(\mathrm{dt}, \mathrm{B}_{\mathrm{FF}} 141,{ }^{3} \mathrm{~J}_{\mathrm{FF}} 28,1 \mathrm{~F}\right.$) and $160.7\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{FF}} 141\right.$, $\left.{ }^{4} \mathrm{~J}_{\mathrm{FF}} 15,1 \mathrm{~F}\right) ; \mathrm{m} / \mathrm{z} 350\left(\mathrm{M}^{+}, 58.1 \%\right), 321\left(\mathrm{M}^{+}-\mathrm{Et}, 100\right)$ and 305 (${ }^{+}$- OEt, 19.1) (Found: C, 47.8; H, 3.0; N, 7.9; F, 21.6\%. $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{CIF}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 47.95 ; \mathrm{H}, 3.2 ; \mathrm{N}, 8.0 ; \mathrm{F}, 21.7 \%$).
Compound 5b'f. M p $122-124^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1730(\mathrm{C}=0)$ and 1140-1220 (CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.42$ ($\mathrm{t},{ }^{3}{ }^{\mathrm{B}}$ нн $7.1,3 \mathrm{H}$), 2.47 (S , $3 \mathrm{H}), 4.47$ ($\mathrm{q},{ }^{3} \mathrm{~J}_{\text {нн }} 7.1,2 \mathrm{H}$), $6.91\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\text {нн }} 7.0,1 \mathrm{H}\right), 7.55(\mathrm{~s}, 1 \mathrm{H})$ and 7.96 (d, ${ }^{3}{ }_{\text {нн }} 7.0,1 \mathrm{H}$); $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 67.0(\mathrm{~s}, 3 \mathrm{~F}), 135.7(\mathrm{~d}$, ${ }^{3} \mathrm{~J}_{\mathrm{FF}} 141,1 \mathrm{~F}$) and $156.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{FF}} 141,1 \mathrm{~F}\right.$); $\mathrm{m} / \mathrm{z} 334$ ($\mathrm{M}^{+}, 38.0 \%$), $305\left(\mathrm{M}^{+}-\mathrm{Et}, 100\right)$ and $289\left(\mathrm{M}^{+}-0 \mathrm{Et}, 17.4\right)$ (Found: C, 49.6; $\mathrm{H}, 3.3 ; \mathrm{N}, 7.9 ; \mathrm{F}, 27.9 . \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 50.3 ; \mathrm{H}, 3.3 ; \mathrm{N}$, 8.4; F, 28.4\%).

Compound 5c'f. Mp $85-87^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1740(\mathrm{C}=0)$ and 1140-1240 (CF); $\delta_{\mathrm{H}}\left({ }^{[} \mathrm{H}_{6}\right]$ acetone) $1.40\left(\mathrm{t},{ }^{3}{ }^{\mathbf{3}}{ }_{\text {нн }} 7.1,3 \mathrm{H}\right.$), $2.49(\mathrm{~s}, 3 \mathrm{H}), 4.40\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\text {нн }} 7.1,2 \mathrm{H}\right), 7.11$ (d, $\left.{ }^{3} \mathrm{~J}_{\text {нн }} 6.5,1 \mathrm{H}\right), 7.54$ ($\mathrm{s}, 1 \mathrm{H}$) and 8.29 ($\left.\mathrm{d},{ }^{3}\right]_{\mathrm{HH}} 6.5,1 \mathrm{H}$); $\delta_{\mathrm{F}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone) 68.9 ($\mathrm{s}, 2$ F), 116.8 ($\mathrm{s}, 2 \mathrm{~F}$), 122.5 (s, 2 F), 133.3 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{FF}} 141,1 \mathrm{~F}$) and 156.8 (d, ${ }^{3} \mathrm{~J}_{\mathrm{fF}} 141,1 \mathrm{~F}$); m/z $450\left(\mathrm{M}^{+}, 36.0 \%\right.$), 421 ($\mathrm{M}^{+}-\mathrm{Et}$, 38.7), 405 ($\mathrm{M}^{+}-\mathrm{OEt}, 15.6$) and 92 (100) (Found: C, 42.2; H, 2.3; $\mathrm{N}, 5.8 ; \mathrm{F}, 33.3 . \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{CIF}{ }_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 42.6 ; \mathrm{H}, 2.5 ; \mathrm{N}$, 6.2; F, 33.7\%).

Compound 5a'g. Mp 70-72 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1730(\mathrm{C}=0)$
and 1170-1240 (CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.43\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}} 7.0,3 \mathrm{H}\right), 2.76(\mathrm{~s}$, $3 \mathrm{H}), 4.47\left(\mathrm{q}, \mathrm{J}_{\mathrm{HH}} 7.0,2 \mathrm{H}\right), 6.78\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}} 7.2,1 \mathrm{H}\right), 7.37(\mathrm{~m}, 1$ H) and $7.68\left(\mathrm{~d},{ }^{3}{ }^{\mathrm{J}}\right.$ нн $\left.8.9,1 \mathrm{H}\right) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 155.9(\mathrm{~m}, 2 \mathrm{~F}), 111.6$ ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{FF}} 141,1 \mathrm{~F}$) and 148.3 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{FF}} 141,1 \mathrm{~F}$); m/z $350\left(\mathrm{M}^{+}\right.$, $63.4 \%), 321\left(\mathrm{M}^{+}-\mathrm{Et}, 100\right)$ and $305\left(\mathrm{M}^{+}-\mathrm{OEt}, 14.5\right)$ (Found: C, 47.7; H, 3.1; N, 7.9; F, 20.9. $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{CIF}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C , 47.95; H, 3.2; N , 8.0; F, 21.7\%).

Compound 5c'h. M p $115-116^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1730(\mathrm{C}=0)$ and $1130-1220(\mathrm{CF}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.43$ (t, ${ }^{3}$ 期 $7.0,3 \mathrm{H}$), 4.48 (q , ${ }^{3}$ J $_{\text {нн }}$ J $7.0,2 \mathrm{H}$), 7.59 ($\mathrm{AB}, \mathrm{J}_{\text {AB }} 8.8,2 \mathrm{H}$) and 8.13 ($\mathrm{s}, 1 \mathrm{H}$); $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 67.3(\mathrm{~s}, 2 \mathrm{~F}), 115.5(\mathrm{~s}, 2 \mathrm{~F}), 121.0(\mathrm{~s}, 2 \mathrm{~F}), 134.1(\mathrm{~d}$, ${ }^{3} \mathrm{~J}_{\mathrm{fF}} 141,1 \mathrm{~F}$) and $151.8\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{fF}} 141,1 \mathrm{~F}\right)$; m/z $516\left(\mathrm{M}^{+}+2\right.$, $26.7 \%), 514\left(M^{+}, 21.3\right), 487\left(M^{+}+2-E t, 26.6\right), 485\left(M^{+}-E t\right.$, 19.9), $459\left(\mathrm{M}^{+}+2\right.$ - OEt, 15.5) and $303\left(\mathrm{M}^{+}-156,100\right)$ (Found: C, 34.9; H, 1.3; N, 5.6; F, 29.7. $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{ClBrF}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, 34.9; H, 1.6; N, 5.4; F, 29.5\%).

Synthesis of 2-polyfluoroalkyl-4H -pyrimido[2,1-b]benzothiazol-4-ones

Typical procedure. A mixture of 2-hydropolyfluoroalk-2enoate 1 (1 mmol), 2-aminobenzothiazole derivative 7i,j (1.5 mmol), triethylamine (5 mmol) and acetonitrile (5 ml) was stirred at $90^{\circ} \mathrm{C}$ for 12 h to give a black reaction product, which was then adsorbed onto silica (particle size 100-200 mesh; 5 g) and air dried at $50^{\circ} \mathrm{C}$. The whole mass was then purified by column chromatography using light petroleum-ethyl acetate ($10: 1, \mathrm{v} / \mathrm{v}$) as eluent to give 2-polyfluoroalkyl-4H -pyrimido-[2,1-b]benzothiazol-4-one.

Compound 8ai. Mp 156-158 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1690(\mathrm{C}=0)$ and 1100-1200 (CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.77(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~m}, 3 \mathrm{H})$ and $9.06(\mathrm{~m}, 1 \mathrm{H}) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 66.6(\mathrm{~s}, 2 \mathrm{~F}), 114.5(\mathrm{~s}, 2 \mathrm{~F})$ and 119.4 (s, 2 F); m/z 386 ($\mathrm{M}^{+}, 85.3 \%$), 351 ($\mathrm{M}^{+}-\mathrm{Cl}, 16.1$) and 223 $\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{Cl}, 100\right)$ (Found: C, 40.3; H, 1.3; N, 7.1; F, 29.7. $\mathrm{C}_{13} \mathrm{H}_{5} \mathrm{ClF}_{6} \mathrm{~N}_{2} \mathrm{OS}$ requires $\mathrm{C}, 40.4 ; \mathrm{H}, 1.3 ; \mathrm{N}, 7.2 ; \mathrm{F}$, 29.5\%).

Compound 8bi. Mp 147-149 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1680(\mathrm{C}=0)$ and 1130-1240(CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.79(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~m}, 3 \mathrm{H})$ and $9.07(\mathrm{~m}, 1 \mathrm{H}) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 79.6(\mathrm{~s}, 3 \mathrm{~F}), 116.3$ (s, 2 F) and 125.4 (s, 2 F); m/z $370\left(\mathrm{M}^{+}, 100 \%\right), 351\left(\mathrm{M}^{+}-\mathrm{F}, 16.1\right)$ and 223 $\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{C}_{2} \mathrm{~F}_{5}, 88.7\right)$ (Found: C, 41.9; H, 1.3; $\mathrm{N}, 7.5$; $\mathrm{F}, 36.1 . \mathrm{C}_{13} \mathrm{H}_{5} \mathrm{~F}_{7} \mathrm{~N}_{2} \mathrm{OS}$ requires $\mathrm{C}, 42.2 ; \mathrm{H}, 1.4 ; \mathrm{N}, 7.8 ; \mathrm{F}$, 35.9\%).

Compound 8di. Mp 134-136 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1700(\mathrm{C}=0)$ and 1140-1240 (CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.74(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~m}, 2 \mathrm{H})$, $7.69(\mathrm{~m}, 1 \mathrm{H})$ and $9.03(\mathrm{~m}, 1 \mathrm{H}) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 80.4(\mathrm{~s}, 3 \mathrm{~F}), 115.4$ ($\mathrm{s}, 2 \mathrm{~F}$), 121.3 ($\mathrm{s}, 4 \mathrm{~F}$) and 125.6 ($\mathrm{s}, 2 \mathrm{~F}$); m/z 470 ($\mathrm{M}^{+}, 77.5 \%$), $451\left(\mathrm{M}^{+}-\mathrm{Cl}, 10.3\right)$ and $223\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{C}_{4} \mathrm{~F}_{9}, 100\right)$ (Found: C, 38.0; $\mathrm{H}, 0.9 ; \mathrm{N}, 6.0 ; \mathrm{F}, 44.3 . \mathrm{C}_{15} \mathrm{H}_{5} \mathrm{~F}_{11} \mathrm{~N}_{2} \mathrm{OS}$ requires $\mathrm{C}, 38.3$; H, 1.1; N, 6.0; F, 44.4\%).
Compound 8mi. M p $176-177^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1690(\mathrm{C}=0)$ and 1100-1240(CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.63(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~m}, 2 \mathrm{H})$, $7.66(\mathrm{~m}, 1 \mathrm{H})$ and $8.97(\mathrm{~m}, 1 \mathrm{H}) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 58.1(\mathrm{~s}, 2 \mathrm{~F}) ; \mathrm{m} / \mathrm{z} 286$ $\left(\mathrm{M}^{+}, 100 \%\right), 351\left(\mathrm{M}^{+}-\mathrm{Cl}, 26.5\right)$ and $223\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{Cl}, 98.9\right)$ (Found: C, 46.0; H, 1.5; N, 9.9; F, 13.3. $\mathrm{C}_{11} \mathrm{H}_{5} \mathrm{ClF}_{2} \mathrm{~N}_{2} \mathrm{SO}$ requires C, 46.1; H, 1.8; N, 9.8; F, 13.25\%).

Compound 8aj. Mp 199-201 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1680(\mathrm{C}=0)$ and 1120-1200 (CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.44(\mathrm{~s}, 3 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 7.30$ ($\mathrm{d},{ }^{3}{ }_{\mathrm{HH}} 8.6,1 \mathrm{H}$), $7.47(\mathrm{~s}, 1 \mathrm{H})$ and $8.87\left(\mathrm{~d},{ }^{3} \mathrm{H}_{\mathrm{H}} 8.6,1 \mathrm{H}\right)$; $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 66.5(\mathrm{~s}, 2 \mathrm{~F}), 114.5(\mathrm{~s}, 2 \mathrm{~F})$ and $119.4(\mathrm{~s}, 2 \mathrm{~F}) ; \mathrm{m} / \mathrm{z}$ $400\left(\mathrm{M}^{+}, 68.9 \%\right), 365\left(\mathrm{M}^{+}-\mathrm{Cl}, 12.0\right)$ and $237\left(\mathrm{M}^{+}-\mathrm{CO}-\right.$ $\mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{Cl}, 100$) (Found: C, 41.9; H, 1.55; N, 7.0; F, 28.8. $\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{ClF}_{6} \mathrm{~N}_{2} \mathrm{OS}$ requires $\mathrm{C}, 42.0 ; \mathrm{H}, 1.8 ; \mathrm{N}, 7.0 ; \mathrm{F}, 28.45 \%$).

Compound $8 \mathrm{cj} . \mathrm{Mp} \mathrm{166-168}{ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1680(\mathrm{C}=0)$ and 1100-1200 (CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.41(\mathrm{~s}, 3 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H})$, $7.27\left(\mathrm{~d}, \mathrm{~J}_{\text {нн }} 8.7,1 \mathrm{H}\right), 7.44(\mathrm{~s}, 1 \mathrm{H})$ and $8.82\left(\mathrm{~d}, \mathrm{3}_{\text {нн }} 8.6\right.$, 1 H); $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 67.3$ (s, 2 F), 115.1 (s, 2 F) and 120.0 (m, $6 \mathrm{~F}) ; \mathrm{m} / \mathrm{z} 500\left(\mathrm{M}^{+}, 59.3 \%\right), 465\left(\mathrm{M}^{+}-\mathrm{Cl}, 11.6\right)$ and 237 $\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{C}_{4} \mathrm{~F}_{8} \mathrm{Cl}, 100\right)$ (Found: C, 38.4; H, 1.2; N, 5.55; $\mathrm{F}, 38.5 . \mathrm{C}_{16} \mathrm{H}_{7} \mathrm{CIF}{ }_{10} \mathrm{~N}_{2} \mathrm{OS}$ requires C, 38.4; H, 1.4; $\mathrm{N}, 5.6 ; \mathrm{F}$, 37.9%).

Compound 8mj. M p $188-190^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1680(\mathrm{C}=0)$ and 1140-1240 (CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.49(\mathrm{~s}, 3 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 7.31$
 $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 58.2(\mathrm{~s}, 2 \mathrm{~F}) ; \mathrm{m} / \mathrm{z} 300\left(\mathrm{M}^{+}, 81.1 \%\right), 265\left(\mathrm{M}^{+}-\mathrm{CI}\right.$, 22.2) and $237\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{Cl}, 100\right)$ (Found: C, 47.95; H, 2.0; $\mathrm{N}, 9.5 ; \mathrm{F}, 12.8 . \mathrm{C}_{12} \mathrm{H}_{7} \mathrm{CIF}{ }_{2} \mathrm{~N}_{2} \mathrm{OS}$ requires $\mathrm{C}, 47.9 ; \mathrm{H}, 2.35 ; \mathrm{N}$, 9.3; F, 12.6\%).

Preparation of compounds $8 \mathrm{ak}, 8 \mathrm{dk}$

A mixture of 2-hydropolyfluoroalk-2-enoate 1 (1 mmol), 2-amino-6-nitrobenzothiazole $7 \mathbf{k}$ (1.5 mmol), triethylamine (5 mmol) and DM F (3 ml) was stirred at $90^{\circ} \mathrm{C}$ for 12 h to give a black reaction mixture from which DM F was distilled under reduced pressure. The residue, dissolved in ethyl acetate, was adsorbed on silica (particle size 100-200 mesh; 5 g) and air dried at $50^{\circ} \mathrm{C}$. The whole mass was then purified by column chromatography using light petroleum-ethyl acetate ($20: 1, \mathrm{v} / \mathrm{v}$) as eluent to give the products.

Compound 8ak. M p 132-134 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1710(\mathrm{C}=0)$ and 1130-1180(CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.74(\mathrm{~s}, 1 \mathrm{H}), 8.28\left(\mathrm{~d},{ }^{3}\right)_{\text {нн }} 8.7$, 1 H), $8.53(\mathrm{~s}, 1 \mathrm{H})$ and $9.14\left(\mathrm{~d},{ }^{3}\right.$ н н $\left.8.7,1 \mathrm{H}\right)$; $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 66.6$ (s , 2 F), 115.7 ($\mathrm{s}, 2 \mathrm{~F}$) and 120.4 ($\mathrm{s}, 2 \mathrm{~F}$); m/z 431 (${ }^{+}$, 84.1%), 385 $\left(\mathrm{M}^{+}-\mathrm{NO}_{2}, 17.9\right)$ and $268\left(\mathrm{M}+-\mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{Cl}-\mathrm{CO}, 100\right)$ (Found: C, 36.2; H, 0.7; N, 9.9; F, 26.6. $\mathrm{C}_{13} \mathrm{H}_{4} \mathrm{CIF}_{6} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires C , 36.2; H, 0.9; N, 9.7; F, 26.4\%).

Compound 8dk. M p $150-152^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1690(\mathrm{C}=0)$ and 1140-1220 (CF); $\delta_{\text {H }}\left(\mathrm{CDCl}_{3}\right) 6.90(\mathrm{~s}, 1 \mathrm{H}), 8.46$ (d, ${ }^{3}$) нн $9.08,1 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H})$ and $9.29\left(\mathrm{~d},{ }^{3}\right.$ н н $\left.9.0,1 \mathrm{H}\right) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)$ 80.2 (s, 3 F), 115.2 ($\mathrm{s}, 2 \mathrm{~F}$), 121.3 ($\mathrm{m}, 4 \mathrm{~F}$) and $125.3(\mathrm{~s}, 2 \mathrm{~F}) ; \mathrm{m} / \mathrm{z}$ 515 ($\mathrm{M}^{+}, 84.5 \%$), $496\left(\mathrm{M}^{+}-\mathrm{F}, 13.0\right), 469\left(\mathrm{M}^{+}-\mathrm{N} \mathrm{O}_{2}, 18.4\right)$ and $268\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{C}_{4} \mathrm{~F}_{9}, 100\right)$ (Found: $\mathrm{C}, 34.9 ; \mathrm{H}, 0.6$; $\mathrm{N}, 8.3 ; \mathrm{F}, 40.8 . \mathrm{C}_{15} \mathrm{H}_{4} \mathrm{~F}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 34.9 ; \mathrm{H}, 0.8 ; \mathrm{N}, 8.2$; F, 40.6\%).

Synthesis of 7-polyfluoroalkyl-5H -thiazolo[3,2-a]pyrimidin-5ones and 7-polyfluoroalkyl-7H -thiazolo[1,2-a]pyrimidin-7-ones

Typical procedure. A mixture of 2-hydropolyfluoroalk-2enoate 1 (1 mmol), 2-amino-1,3-thiazole 9 (1.5 mmol), triethylamine (5 mmol) and acetonitrile (5 ml) was stirred at $90^{\circ} \mathrm{C}$ for 50 h to give a black reaction product, which was then adsorbed onto silica (particle size 100-200 mesh; 5 g) and air dried at $50^{\circ} \mathrm{C}$. The whole mass was then purified by column chromatography using light petroleum-ethyl acetate ($8: 1, \mathrm{v} / \mathrm{v}$) as eluent to give 7-polyfluoroalkyl-5H -thiazolo-[3,2-a]pyrimidin-5-ones. A fter that, elution first with light petroleum-ethyl acetate ($2: 1, \mathrm{v} / \mathrm{v}$) gave the excess of 2 -amino-1,3,4-thiadiazole 9 , and then with light petroleum-ethyl acetate (1:1) gave 5-polyfluoroalkyl-7H -thiazolo[1,2-a]pyrim-idin-7-ones.
Compound 10a. Mp 63-65 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1710(\mathrm{C}=0)$ and 1100-1200 (CF); $\delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 6.62(\mathrm{~s}, 1 \mathrm{H}), 7.16$ ($\mathrm{d},{ }^{3}{ }^{3}$ нн 4.9 , 1 H) and $8.01\left(\mathrm{~d},{ }^{3}{ }_{\mathrm{HH}} 4.9,1 \mathrm{H}\right) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 66.5(\mathrm{~s}, 2 \mathrm{~F}), 114.0$ (s, 2 F) and 119.3 (s, 2 F); m/z 336 ($\mathrm{M}^{+}, 75.1 \%$), 301 ($\mathrm{M}^{+}-\mathrm{Cl}$, 20.0) and 173 ($\mathrm{M}^{+}-\mathrm{CO}-\mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{Cl}, 100$) (Found: C , 32.4; $\mathrm{H}, 0.9 ; \mathrm{N}, 8.3 ; \mathrm{F}, 34.0 . \mathrm{C}_{9} \mathrm{H}_{3} \mathrm{CIF}{ }_{6} \mathrm{~N}_{2} \mathrm{OS}$ requires C, 32.1; H, 0.9; N, 8.3; F, 33.9\%).

Compound 11a. Mp 138-140 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1650(\mathrm{C}=0)$ and 1130-1190 (CF); $\delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 6.63$ ($\mathrm{s}, 1 \mathrm{H}$), 7.09 ($\mathrm{d},{ }^{3}{ }^{3}$ нн 4.9 , 1 H) and $\left.7.37\left(\mathrm{~d},{ }^{3}\right)_{\mathrm{HH}} 4.9,1 \mathrm{H}\right)$; $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 66.7(\mathrm{~s}, 2 \mathrm{~F}), 110.9$ (s, 2 F) and 118.3 (s, 2 F); m/z $336\left(\mathrm{M}^{+}, 45.7 \%\right), 301\left(\mathrm{M}^{+}-\mathrm{Cl}\right.$, 14.4) and $173\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{Cl}, 100\right)$ (Found: $\mathrm{C}, 32.0 ; \mathrm{H}$, $0.85 ; \mathrm{N}, 8.4 ; \mathrm{F}, 33.75 . \mathrm{C}_{9} \mathrm{H}_{3} \mathrm{CIF}_{6} \mathrm{~N}_{2} \mathrm{OS}$ requires $\mathrm{C}, 32.1 ; \mathrm{H}, 0.9$; N, 8.3; F, 33.9\%).
Compound 10b. Mp $54-56^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1700(\mathrm{C}=0)$ and 1130-1240(CF); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.63(\mathrm{~s}, 1 \mathrm{H}), 7.15\left(\mathrm{~d},{ }^{3}\right)_{\mathrm{HH}} 4.9$, 1 H) and $8.02\left(\mathrm{~d},{ }^{3}{ }_{\mathrm{HH}} 4.9,1 \mathrm{H}\right) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 80.1(\mathrm{~s}, 3 \mathrm{~F}), 116.1$ (s, 2 F) and 125.6 (s, 2 F); m/z $320\left(\mathrm{M}^{+}, 100 \%\right), 301\left(\mathrm{M}^{+}-\mathrm{F}\right.$, 12.8) and $173\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{C}_{2} \mathrm{~F}_{5}\right.$, 82.5) (Found: C, 33.7; H, $0.95 ; \mathrm{N}, 9.05 ; \mathrm{F}, 42.4 . \mathrm{C}_{9} \mathrm{H}_{3} \mathrm{~F}_{7} \mathrm{~N}_{2} \mathrm{OS}$ requires $\mathrm{C}, 33.8 ; \mathrm{H}, 0.9$; N, 8.75; F, 41.5\%).

Compound 11b. M p $181-183^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1650(\mathrm{C}=0)$ and 1130-1240(CF); $\delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 6.71$ (s, 1 H), 6.96 ($\mathrm{d},{ }^{3}{ }^{3}$ нн 4.9 , 1 H) and $7.38\left(\mathrm{~d},{ }^{3}{ }_{\text {нн }} 4.9,1 \mathrm{H}\right) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 79.4(\mathrm{~s}, 3 \mathrm{~F}), 112.3$ ($\mathrm{s}, 2 \mathrm{~F}$) and $124.1(\mathrm{~s}, 2 \mathrm{~F}) ; \mathrm{m} / \mathrm{z} 320\left(\mathrm{M}^{+}, 78.0 \%\right), 301\left(\mathrm{M}^{+}-\mathrm{F}\right.$, 8.8) and $173\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{C}_{2} \mathrm{~F}_{5}\right.$, 100) (Found: C, 33.8; $\mathrm{H}, 0.8$; $\mathrm{N}, 8.9 ; \mathrm{F}, 40.9 . \mathrm{C}_{9} \mathrm{H}_{3} \mathrm{~F}_{7} \mathrm{~N}_{2} \mathrm{OS}$ requires $\mathrm{C}, 33.8 ; \mathrm{H}, 0.9 ; \mathrm{N}, 8.75$; F, 41.5\%).

Compound $10 \mathrm{~m} . \mathrm{Mp} 47-49^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1700(\mathrm{C}=0)$ and $1130-1230(\mathrm{C}-\mathrm{F}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.60(\mathrm{~s}, 1 \mathrm{H}), 7.20\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\text {нн }}\right.$ $4.9,1 \mathrm{H}$) and $8.03\left(\mathrm{~d},{ }^{3}{ }_{\mathrm{HH}} 4.9,1 \mathrm{H}\right) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 58.0(\mathrm{~s}, 2 \mathrm{~F}) ; \mathrm{m} / \mathrm{z}$ $236\left(\mathrm{M}^{+}, 82.4 \%\right), 201\left(\mathrm{M}^{+}-\mathrm{Cl}, 36.5\right)$ and $173\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{Cl}\right.$, 100) (Found: C, 35.2; H, 6.9; N, 12.2; F, 16.6. $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{CIF}_{2} \mathrm{~N}_{2} \mathrm{OS}$ requires $\mathrm{C}, 35.5 ; \mathrm{H}, 1.3 ; \mathrm{N}, 11.8 ; \mathrm{F}, 16.1 \%)$.

Compound 11m. M p 159-161 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1640(\mathrm{C}=0)$ and 1100-1200 (C-F); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.65(\mathrm{~s}, 1 \mathrm{H}), 7.23\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $4.9,1 \mathrm{H})$ and $7.54\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}} 4.9,1 \mathrm{H}\right) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 56.3(\mathrm{~s}, 2 \mathrm{~F}) ; \mathrm{m} / \mathrm{z}$ $236\left(\mathrm{M}^{+}, 64.7 \%\right)$ and $173\left(\mathrm{M}^{+}-\mathrm{CO}-\mathrm{CI}, 100\right)$ (Found: $\mathrm{C}, 35.9$; $\mathrm{H}, 1.3 ; \mathrm{N}, 11.8 ; \mathrm{F}, 16.5 . \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClF}_{2} \mathrm{~N}_{2} \mathrm{OS}$ requires $\mathrm{C}, 35.5 ; \mathrm{H}, 1.3$; N, 11.8; F, 16.1\%).

Synthesis of 2-polyfluoroalkyl[1,3]thiazino[3,2-a]benzimidazol-4-ones

A mixture of 2-hydropolyfluoroalk-2-enoate 1 (1 mmol), 2-mercaptobenzimidazole 12 (1.5 mmol), $\mathrm{NaHCO}_{3}(5 \mathrm{mmol})$ and acetonitrile (5 ml) was stirred at $50^{\circ} \mathrm{C}$ for 6 h , and then at $90^{\circ} \mathrm{C}$ for 10 h with continued stirring to give a brown reaction product. A fter cooling to room temperature, the reaction mixture was extracted with ethyl acetate. The extract was washed with saturated brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The resulting residue was purified by column chromatography using light petroleum-ethyl acetate ($10: 1$) as eluent to give 2-polyfluoroalkyl[1,3]thiazino[3,2-a]benzimidazol-4-one 14 (78\%).

Compound 14c. Mp 148-150 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1690(\mathrm{C}=0)$ and $1120-1240(\mathrm{C}-\mathrm{F}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.06(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~m}, 2 \mathrm{H})$, $7.81(\mathrm{~m}, 1 \mathrm{H})$ and $8.52(\mathrm{~m}, 1 \mathrm{H}) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right) 67.6(\mathrm{~s}, 2 \mathrm{~F}), 109.2$ ($\mathrm{s}, 2 \mathrm{~F}$) and $119.4(\mathrm{~m}, 6 \mathrm{~F}) ; \mathrm{m} / \mathrm{z} 486\left(\mathrm{M}^{+}, 100 \%\right), 451\left(\mathrm{M}^{+}-\mathrm{Cl}\right.$, 14.5), $251\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{~F}_{8} \mathrm{Cl}, 6.6\right)$ and $223\left(\mathrm{M}+-\mathrm{CO}-\mathrm{C}_{4} \mathrm{~F}_{8} \mathrm{Cl}\right.$, 55.6) (Found: C, 36.9; H, 0.9; N, 5.5; F, 38.2. $\mathrm{C}_{15} \mathrm{H}_{5} \mathrm{CIF}{ }_{10} \mathrm{~N}_{2} \mathrm{OS}$ requires $C, 37.0 ; H, 1.0 ; N, 5.8 ; F, 39.0 \%)$.

Acknowledgements

We thank Dr K. von Werner of Hoechst AG Werk Gendorf, Germany, for the gift of perfluoroalkyl iodide 612 and Professor H.-M. Wu and Dr Shao-K ai Jiang of our Institute for the
measurement and interpretation of the $600 \mathrm{M} \mathrm{Hz}{ }^{1} \mathrm{HNMR}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 a} \mathbf{a}$.

R eferences

1 (a) R. E. Banks, Organofluorine Compounds and Their Applications, Ellis H orwood, Chichester, 1979; (b) R. Filler and Y. K obayashi, Biomedicinal Aspects of Fluorine Chemistry, Elsevier Biomedical Press and K odansha, 1982; (c) M. Hudlicky, C hemistry of Organic Fluorine C ompounds, Ellis H orwood, N ew York, 1976.
2 (a) M . J. Bartek, L. D. M iller and P. S. Weiss, Toxicol. A ppl. P harmacol., 1970, 17, 41; (b) P. R. Young, P. W. D odge, G. W. Carter and E. T. K imura, A rch. Int. Pharmacodyn. Ther., 1974, 212, 205; (c) E. A bignente, F. A rena, P. Avara, E. Luraschi, C. Saturnino, E. Marmo, M. Cazzola, F. Rossi and E. Lampa, Farmaco, Ed. Sci., 1985, 40, 190; (d) E. A bignente, F. A rena, P. de Caporariis, R. Patscot, E. M armo, E. L ampa and F. Rossi, E ur. J. M ed. Chem. Chim. Ther., 1985, 20, 79.
3 (a) F. Fulop, Hermecz, Z. M eszaros, Gy. Dombi and G. Bernath, J. H eterocyclic Chem., 1979, 16, 457; (b) H. L. Y ale, U SP 3960847 (C hem. A bstr., 1976, 85, 123965f).
4 (a) I. Hermecz, A. H orvath, L. Vasvari-D ebreczy and Z. M eszaros, Synthesis, 1984, 152; (b) P. L. Ferrarini, C. M ori, O. Livi, G. Biagi and A. M. M arini, J. H eterocycl. Chem., 1983, 20, 1053; (c) H. N. AI-Jallo and I. A. AI-Biaty, J. H eterocycl. C hem., 1978, 15, 801.

5 (a) B. D ash, M. Patra and P. K. M ohapatra, J. Inst. Chem. (India), 1980, 52, 92; (b) S. A nreae and E. Schmitz, Ger. (E ast) D D 270914 (C hem. Abstr., 1990, 112, 139046u); (c) R. H. K han and R. C. R astogi, J. A gric. Food C hem., 1991, 39, 2300.
6 (a) M. Di Braccio, G. Roma, M. M azzei, A. Balbi and R. Jesta, Farmaco, Ed. Sci., 1986, 41, 183; (b) J. Baetz, G er. Offen. 2241241 (Chem. A bstr., 1973, 78, 147990s).
7 S. J. De Melo, C. Luu-Duc, F. Thomasson, G. Narcisse and C. G aultier, A nn. P harm. Fr., 1992, 20, 39.

8 D. Evans, B.P. 1,345,148 (C hem. A bstr., 1974, 80, 133418r).
9 (a) E. A bignente, P. de Caprariis, R. Patscot and A. Sacchi, J. Heterocycl. Chem., 1986, 23, 1031; (b) R. E. Banks, R. G. Pritchard and J. Thomson, J. Chem. Soc., Perkin Trans. 1, 1986, 1769; (c) R. E. Banks and J. Thomson, J. Fluorine C hem., 1984, 26, 499; (d) Z.-T. H uang and Z.-R. Liu, H eterocycles, 1986, 24, 2247 and references therein.
10 Wei-yuan Huang, Long Lu and Yuan-fa Zhang, Chin. J. Chem., 1990, 281.
11 (a) H. L. Yale, G. Toeplitz, J. Z. Gougoutas and M. Puar, J. H eterocycl. C hem., 1973, 10, 123; (b) H. L. Y ale, J. H eterocycl. Chem., 1975, 12, 427.

Paper 6/03071H
Received 1st J anuary 1996
A ccepted 5th N ovember 1996

